Broad-Spectrum Antiviral Effect of Cannabidiol Against Enveloped and Nonenveloped Viruses

Cannabidiol (CBD), the main non-psychoactive cannabinoid of the Cannabis sativa plant, is a powerful antioxidant compound that in recent years has increased interest due to causes effects in a wide range of biological functions. Zika virus (ZIKV) is a virus transmitted mainly by the Aedes aegypti mosquitoes, which causes neurological diseases, such as microcephaly and Guillain-Barre syndrome. Although the frequency of viral outbreaks has increased recently, no vaccinations or particular chemotherapeutic treatments are available for ZIKV infection. The major aim of this study was to explore the in vitro antiviral activity of CBD against ZIKV, expanding also to other dissimilar viruses.

Antiviral activities of hemp cannabinoids

Hemp is an understudied source of pharmacologically active compounds and many unique plant secondary metabolites including more than 100 cannabinoids. After years of legal restriction, research on hemp has recently demonstrated antiviral activities in silico, in vitro, and in vivo for cannabidiol (CBD), Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiolic acid (CBDA), cannabigerolic acid (CBGA), and several other cannabinoids against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), human immunodeficiency virus (HIV), and γ-herpes viruses. Mechanisms of action include inhibition of viral cell entry, inhibition of viral proteases, and stimulation of cellular innate immune responses. The anti-inflammatory properties of cannabinoids are also under investigation for mitigating the cytokine storm of COVID-19 and controlling chronic inflammation in people living with HIV. Retrospective clinical studies support antiviral activities of CBD, Δ9-THC, and cannabinoid mixtures as do some prospective clinical trials, but appropriately designed clinical trials of safety and efficacy of antiviral cannabinoids are urgently needed.

Pathogenesis Underlying Neurological Manifestations of Long COVID Syndrome and Potential Therapeutics

The development of long-term symptoms of coronavirus disease 2019 (COVID-19) more than four weeks after primary infection, termed “long COVID” or post-acute sequela of COVID-19 (PASC), can implicate persistent neurological complications in up to one third of patients and present as fatigue, “brain fog”, headaches, cognitive impairment, dysautonomia, neuropsychiatric symptoms, anosmia, hypogeusia, and peripheral neuropathy. Pathogenic mechanisms of these symptoms of long COVID remain largely unclear; however, several hypotheses implicate both nervous system and systemic pathogenic mechanisms such as SARS-CoV2 viral persistence and neuroinvasion, abnormal immunological response, autoimmunity, coagulopathies, and endotheliopathy. Outside of the CNS, SARS-CoV-2 can invade the support and stem cells of the olfactory epithelium leading to persistent alterations to olfactory function. SARS-CoV-2 infection may induce abnormalities in innate and adaptive immunity including monocyte expansion, T-cell exhaustion, and prolonged cytokine release, which may cause neuroinflammatory responses and microglia activation, white matter abnormalities, and microvascular changes. Additionally, microvascular clot formation can occlude capillaries and endotheliopathy, due to SARS-CoV-2 protease activity and complement activation, can contribute to hypoxic neuronal injury and blood–brain barrier dysfunction, respectively. Current therapeutics target pathological mechanisms by employing antivirals, decreasing inflammation, and promoting olfactory epithelium regeneration. Thus, from laboratory evidence and clinical trials in the literature, we sought to synthesize the pathophysiological pathways underlying neurological symptoms of long COVID and potential therapeutics.

Therapeutic Effects of Cannabinoids and Their Applications in COVID-19 Treatment

Cannabidiol is showing promising results for the treatment of COVID-19, due to its capa- bility of acting on the unleashed cytokine storm, on the proteins necessary for both virus entry and replication and on the neurological consequences of patients who have been infected by the virus. Here, we summarize the latest knowledge regarding the advantages of using cannabinoids in the treatment of COVID-19.

Cannabis consumption is associated with lower COVID-19 severity among hospitalized patients: a retrospective cohort analysis

While cannabis is known to have immunomodulatory properties, the clinical consequences of its use on outcomes in COVID-19 have not been extensively evaluated. We aimed to assess whether cannabis users hospitalized for COVID-19 had improved outcomes compared to non-users.

Cannabinoids as Emergent Therapy Against COVID-19

The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory distress syndrome coronavirus 2(SARS-Cov-2), was identified for the first time in late 2019 in China, resulting in a global pandemic of massiveimpact. Despite a fast development and implementation of vaccination strategies, and the scouting of severalpharmacological treatments, alternative effective treatments are still needed. In this regard, cannabinoids repre-sent a promising approach because they have been proven to exhibit several immunomodulatory, anti-inflammatory, and antiviral properties in COVID-19 disease models and related pathological conditions. Thismini-review aims at providing a practical brief overview of the potential applications of cannabinoids so far iden-tified for the treatment and prevention of COVID-19, finally considering key aspects related to their technologicaland clinical implementation.