Entries by Michelle Smith

,

The clinical and pathological significance of increased expression of the cannabinoid receptors CB-1R and CB-2R in patients with papillary thyroid carcinomas compared to benign thyroid lesions

Phytocannabinoids have been shown to inhibit the aggregation and neurotoxicity of the neurotoxic Alzheimer’s disease protein beta amyloid (Aβ). We characterised the capacity of six phytocannabinoids: cannabichromene, cannabigerol, cannabinol, cannabidivarin, cannabidiol and Δ9-tetrahydrocannabinol, to disrupt Aβ aggregation and protect against Aβ-evoked neurotoxicity in PC12 cells. Neuroprotection against lipid peroxidation and Aβ-induced cytotoxicity was assessed using the MTT assay. Transmission electron microscopy was used to visualise phytocannabinoid effects on Aβ aggregation and fluorescence microscopy, with morphometrics and principal component analysis to assess PC12 cell morphology.

The structurally diverse phytocannabinoids cannabichromene, cannabigerol and cannabinol significantly inhibit amyloid β-evoked neurotoxicity and changes in cell morphology in PC12 cells

Phytocannabinoids have been shown to inhibit the aggregation and neurotoxicity of the neurotoxic Alzheimer’s disease protein beta amyloid (Aβ). We characterised the capacity of six phytocannabinoids: cannabichromene, cannabigerol, cannabinol, cannabidivarin, cannabidiol and Δ9-tetrahydrocannabinol, to disrupt Aβ aggregation and protect against Aβ-evoked neurotoxicity in PC12 cells. Neuroprotection against lipid peroxidation and Aβ-induced cytotoxicity was assessed using the MTT assay. Transmission electron microscopy was used to visualise phytocannabinoid effects on Aβ aggregation and fluorescence microscopy, with morphometrics and principal component analysis to assess PC12 cell morphology.

Pharmacological Aspects and Biological Effects of Cannabigerol and Its Synthetic Derivatives

Cannabigerol (CBG) is a cannabinoid from the plant Cannabis sativa that lacks psychotomimetic effects. Its precursor is the acidic form, cannabigerolic acid (CBGA), which is, in turn, a biosynthetic precursor of the compounds cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC). CBGA decarboxylation leads to the formation of neutral cannabinoid CBG, through a chemical reaction catalyzed by heat. On the basis of the growing interest in CBG and with the aim of highlighting scientific information on this phytocannabinoid, we focused the content of this article on its pharmacokinetic and pharmacodynamic characteristics and on its principal pharmacological effects. CBG is metabolized in the liver by the enzyme CYP2J2 to produce hydroxyl and di-oxygenated products. CBG is considered a partial agonist at the CB1 receptor (R) and CB2R, as well as a regulator of endocannabinoid signaling. Potential pharmacological targets for CBG include transient receptor potential (TRP) channels, cyclooxygenase (COX-1 and COX-2) enzymes, cannabinoid, 5-HT1A, and alpha-2 receptors. Pre-clinical findings show that CBG reduces intraocular pressure, possesses antioxidant, anti-inflammatory, and anti-tumoral activities, and has anti-anxiety, neuroprotective, dermatological, and appetite-stimulating effects. Several findings suggest that research on CBG deserves to be deepened, as it could be used, alone or in association, for novel therapeutic approaches for several disorders.

Relative Risk of Cannabis, Alcohol, and Their Combination on Driver Behavior in Fatal Crashes in Washington State

Self-dosing of off-the-shelf cannabidiol (CBD) for a myriad of health conditions is common in the USA. These CBD products are often mislabeled, suggesting that much less or much more CBD is being consumed than indicated on the label. This study examined the relationship between long-term self-dosing of CBD and (a) indications and, when a verified concentration of CBD is being consumed, (b) the daily CBD dosage, (c) the impact on general health and symptoms, and (d) over-the-counter (OTC) and prescription (Rx) drug usage.

Long-Term, Self-Dosing CBD Users: Indications, Dosage, and Self-Perceptions on General Health/Symptoms and Drug Use

Self-dosing of off-the-shelf cannabidiol (CBD) for a myriad of health conditions is common in the USA. These CBD products are often mislabeled, suggesting that much less or much more CBD is being consumed than indicated on the label. This study examined the relationship between long-term self-dosing of CBD and (a) indications and, when a verified concentration of CBD is being consumed, (b) the daily CBD dosage, (c) the impact on general health and symptoms, and (d) over-the-counter (OTC) and prescription (Rx) drug usage.

,

Recreational cannabis use over time in individuals at clinical high risk for psychosis: Lack of associations with symptom, neurocognitive, functioning, and treatment patterns

Recreational cannabis use has recently gained considerable interest as an environmental risk factor that triggers the onset of psychosis. To date, however, the evidence that cannabis is associated with negative outcomes in individuals at clinical high risk (CHR) for psychosis is inconsistent. The present study tracked cannabis usage over a 2-year period and examined its associations with clinical and neurocognitive outcomes, along with medication rates. CHR youth who continuously used cannabis had higher neurocognition and social functioning over time, and decreased medication usage, relative to non-users. Surprisingly, clinical symptoms improved over time despite the medication decreases.

Quality of Life in Patients Receiving Medical Cannabis

Medical cannabis has been used to relieve the symptoms of people with various chronic diseases. Despite of this, it has been stigmatized, even after its legalization in many countries. The purpose of this study was to investigate the quality of life of patients receiving medical cannabis. One hundred patients receiving medical cannabis were given (a) a socio-demographic and clinical questionnaire, and (b) the SF-36 Health Survey scale for assessing quality of life.

,

Could cannabinoids provide a new hope for ovarian cancer patients?

It is known that gynecological cancers remain a worldwide problem and as shown by the statistics, there is a need for new gynecological cancer treatments. Cannabinoids, the pharmacologically active compounds of the Cannabis sativa plant, have been used for many centuries by individuals as a symptomatic treatment to alleviate pain, nausea, vomiting, and to help stimulate appetite. Research has revealed that cannabinoids also exert anti-cancer activity such as anti-proliferative and pro-apoptotic effects through a variety of mechanisms. There is significant value in the development of these compounds as anti-cancer therapies in clinical practice as they do not produce the typical toxic side effects that exist with conventional therapies and recent clinical trials have shown their great tolerability by patients at high doses.

Studies Pertaining to the Emerging Cannabinoid Hexahydrocannabinol (HHC)

We report studies pertaining to two isomeric hexahydrocannabinols (HHCs), (9R)-HHC and (9S)-HHC, which are derivatives of the psychoactive cannabinoids Δ9- and Δ8-THC. HHCs have been known since the 1940s, but have become increasingly available to the public in the United States and are typically sold as a mixture of isomers. We show that (9R)-HHC and (9S)-HHC can be prepared using hydrogen-atom transfer reduction, with (9R)-HHC being accessed as the major diastereomer. In addition, we report the results of cannabinoid receptor studies for (9R)-HHC and (9S)-HHC. The binding affinity and activity of isomer (9R)-HHC are similar to that of Δ9-THC, whereas (9S)-HHC binds strongly in cannabinoid receptor studies but displays diminished activity in functional assays. This is notable, as our examination of the certificates of analysis for >60 commercially available HHC products show wide variability in HHC isomer ratios (from 0.2:1 to 2.4:1 of (9R)-HHC to (9S)-HHC). These studies suggest the need for greater research and systematic testing of new cannabinoids. Such efforts would help inform cannabis-based policies, ensure the safety of cannabinoids, and potentially lead to the discovery of new medicines.

, ,

Hippocampal differential expression underlying the neuroprotective effect of delta-9-tetrahydrocannabinol microdose on old mice

Delta-9-tetrahydrocannabinol (THC) is the primary psychoactive compound of the cannabis plant and an exogenous ligand of the endocannabinoid system. In previous studies, we demonstrated that a single microdose of THC (0.002 mg/kg, 3–4 orders of magnitude lower than the standard dose for rodents) exerts distinct, long-term neuroprotection in model mice subjected to acute neurological insults. When administered to old, healthy mice, the THC microdose induced remarkable long-lasting (weeks) improvement in a wide range of cognitive functions, including significant morphological and biochemical brain alterations. To elucidate the mechanisms underlying these effects, we analyzed the gene expression of hippocampal samples from the model mice. Samples taken 5 days after THC treatment showed significant differential expression of genes associated with neurogenesis and brain development. In samples taken 5 weeks after treatment, the transcriptional signature was shifted to that of neuronal differentiation and survival. This study demonstrated the use of hippocampal transcriptome profiling in uncovering the molecular basis of the atypical, anti-aging effects of THC microdose treatment in old mice.

, ,

Hippocampal differential expression underlying the neuroprotective effect of delta-9-tetrahydrocannabinol microdose on old mice

Delta-9-tetrahydrocannabinol (THC) is the primary psychoactive compound of the cannabis plant and an exogenous ligand of the endocannabinoid system. In previous studies, we demonstrated that a single microdose of THC (0.002 mg/kg, 3–4 orders of magnitude lower than the standard dose for rodents) exerts distinct, long-term neuroprotection in model mice subjected to acute neurological insults. When administered to old, healthy mice, the THC microdose induced remarkable long-lasting (weeks) improvement in a wide range of cognitive functions, including significant morphological and biochemical brain alterations. To elucidate the mechanisms underlying these effects, we analyzed the gene expression of hippocampal samples from the model mice. Samples taken 5 days after THC treatment showed significant differential expression of genes associated with neurogenesis and brain development. In samples taken 5 weeks after treatment, the transcriptional signature was shifted to that of neuronal differentiation and survival. This study demonstrated the use of hippocampal transcriptome profiling in uncovering the molecular basis of the atypical, anti-aging effects of THC microdose treatment in old mice.

, , ,

Self-Reported Effects of Medical Cannabis on Illness Severity, Depression and Anxiety in Fibromyalgia Patients: A Large Retrospective Case Series

To observe the effect of cannabis on fibromyalgia illness severity and related symptoms of depression and anxiety. A retrospective chart review was conducted to identify all patients who indicated fibromyalgia as a primary reason for seeking medical cannabis and completed at least 1 follow-up visit at Harvest Medicine clinics from January 2017 to July 2021. Data extracted from patient charts included Patient Health Questionnaire-9 (PHQ-9) scores, Generalized Anxiety Disorder-7 (GAD-7) scores, and self-reported illness severity scores. Changes in these scores between a patient’s intake and first follow-up visits were calculated and analyzed for significance overall and in different demographic subgroups. Patients for whom no follow-up data were available were excluded.